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Abstract: Greek uses H�, LþH�, and H�þ L, all followed by L-L% edge tones, as nuclear pitch accents in statements. A previ-
ous analysis demonstrated that these accents are distinguished by F0 scaling and contour shape. This study expands the earlier
investigation by exploring additional cues, namely, voice quality, amplitude, and duration, in distinguishing the pitch accents,
and investigating individual variability in the selection of both F0 and non-F0 cues. Bayesian multivariate analysis and hierar-
chical clustering demonstrate that the accents are distinguished not only by F0 but also by additional cues at the group level,
with individual variability in cue selection. VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Research on intonation has largely focused on the study of F0, the prime intonation exponent, with influential models,
such as the Autosegmental-Metrical theory of intonational phonology (Pierrehumbert, 1980; Ladd, 2008), representing
intonation categories, e.g., pitch accents, by their F0 characteristics. Consequently, the phonetics of intonation is often
studied with the expectation that category differences are reflected in F0, with little consideration of additional correlates.
Furthermore, research on intonation has largely focused on aggregate results that often reinforce a sense of uniformity
across study participants (Arvaniti, 2016).

Recent studies, however, indicate that intonation categories are realized using various correlates, including voice
quality, and the duration and amplitude of segments [e.g., Breen et al. (2010) on American English, Arvaniti et al. (2016)
on Polish, and Roessig et al. (2022) on German]. As there is also evidence that these correlates are perceptually relevant
(Shang et al., 2024), in the remainder of the paper we refer to them as cues. Arvaniti et al. (2024) show that such cues not
only provide much-needed redundancy but may also enhance intonational contrasts or be in a cue-trading relationship
with F0: for example, in their study of Greek pitch accents, the F0 of unaccented syllables was high before the high scaled
H�þL but low before H�, while vowels accented with LþH� showed increased duration when the accent was produced
with a lower F0 peak or a shallower than average dip.

Additionally, it is becoming increasingly clear that there is substantial inter-speaker variability in phonetic reali-
zation, particularly in the value ranges used by different speakers. This has been demonstrated with segmental cues, such
as VOT duration [e.g., Chodroff and Wilson (2017)], and prosodic cues, such as the degree of articulatory strengthening
at phrasal onset (Fougeron and Keating, 1997) and the articulatory kinematics of phrase finality (Byrd et al., 2006).
Relatively fewer studies have examined the number of cues used by individual speakers for intonation, and many are small
in scope [e.g., Dahan and Bernard (1996) on French emphatic accents and Cangemi et al. (2015) on German pitch
accents] or focus only on F0 differences [e.g., Niebuhr et al. (2011)].

Here, we extend this line of research by exploring individual variability in the selection of both tonal and non-
tonal cues in intonation, using three pitch accents—H�, LþH�, and H�þ L—found in nuclear position in Greek declara-
tives where they are followed by L-L% edge tones; they are illustrated in Fig. 1. Arvaniti et al. (2024) show that these
accents differ in F0 scaling (H�< LþH�<H�þ L) and overall contour shape: LþH� is a rise that starts with a marked
F0 dip, while H� and H�þ L are a low gradual fall and a high steep fall, respectively. Here, we expand that investigation
by examining group-level patterns in the use of three non-F0 cues, duration, voice quality, and amplitude, and individual
variability in tonal and non-tonal cue selection.

a)A preliminary analysis was presented at Acoustics 2023 Sydney, 4–8 December 2023, Sydney, Australia.
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2. Methods

2.1 Participants and materials

The dataset was that of Arvaniti et al. (2024). Here, we present the gist of the methodology; for details, see the OSF
repository.

The dataset comprises recordings from 13 native speakers of Standard Greek (10 females, mean age 34) without
self-reported speech or hearing disorders. Recordings were conducted in quiet environments using a DAT recorder at a
sampling rate of 44.1 kHz.

The participants read question-answer pairs. Following the analysis of Arvaniti and Baltazani (2005), each ques-
tion was formulated to evoke one of three pragmatic situations, thereby eliciting one of the target accents in the response
[cf. Roessig et al. (2022)]. All responses were declarative statements ending in a fall; see Table 1 for examples. H� was
elicited using questions prompting broad focus statements, indicating the accented item is new in discourse. H�þ L was
elicited using questions seeking information the addressee considers obvious or predictable. LþH� was elicited using ques-
tions prompting narrow focus, as LþH� indicates corrective or contrastive information.

The responses consisted of one or two content words (Table 1). One-word responses carried one of the target
accents; two-word responses had a prenuclear L�þH on the first content word and the target accent on the last. The
words carrying the target accents were stressed on the antepenult, penult, or ultima. The dialogues were interspersed with
fillers, and read four times across four blocks (one per repetition). This yielded 936 tokens (13 participants � 3 accents � 3
stress locations � 2 contexts [presence/absence of prenuclear L�þH] � 4 repetitions); 92 tokens were discarded due to
excessive background noise, disfluencies, and extensive stretches of creak. The naturalness and pragmatic appropriateness
of the remaining tokens were assessed auditorily by the second author, a native speaker of Greek. All were deemed ade-
quate exemplars of the intended tunes and thus suitable for further analysis. The analyzed dataset comprised 844 tokens
(272 H�s, 274 H�þ Ls, and 298 LþH�s).

2.2 Measurements

The F0-related measurements were derived using Functional Principal Component Analysis (FPCA) (Ramsay and
Silverman, 2005). FPCA was conducted by Arvaniti et al. (2024) and the output was used here.

FPCA mathematically represents each input curve using Eq. (1), where f tð Þ represents the modelled F0 curve,
approximated by adding principal component curves (PC curves: PC1 tð Þ, PC2 tð Þ, etc.) with different scores (s1; s2; etc.)
to the mean curve of all input curves (l tð Þ),

f tð Þ � l tð Þ þ s1� PC1 tð Þ þ s2� PC2 tð Þ þ � � �: (1)

The PC curves represent dominant modes of variation among the input curves such as variations in F0 shape
and scaling. The score of a PC curve denotes the extent to which the curve contributes to approximating the input curve;
it is unique for each input curve and characterizes that curve’s shape. As the PC scores are numerical values, using them
as the dependent variable with the effect of interest (e.g., accent type) as the predictor in a statistical model provides an
understanding of that effect’s impact on curve shape (Gubian et al., 2015).

In Arvaniti et al. (2024), FPCA was conducted following Gubian et al. (2015); this involved curve smoothing,
landmark registration with the accented vowel onset as landmark, and functional PCA (for details, see the OSF repository).
This analysis was done on F0 curves spanning a three-syllable window consisting of the accented syllable of each target
word and the two unstressed syllables preceding it, as this window captured both F0 changes on unaccented syllables
under the influence of the upcoming accent (H�, LþH�, or H�þ L) and varying degrees of tonal crowding as the accented
syllable approached the utterance end.

The FPCA output is shown in Fig. 2(a). Following Arvaniti et al. (2024), we focused on PC1 and PC2 which
capture most of the accent-related curve variance in the dataset. PC1 primarily reflects curve scaling, with higher scores
(red lines) resulting in higher scaling and lower scores (blue lines) resulting in lower scaling. PC2 reflects contour shape,

Fig. 1. Illustration of the three accents on the test word [laðo’lemono] “oil-lemon [sauce],” as produced by study speaker M13. Vertical lines
mark the stressed syllable.
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with higher scores leading to a rise-fall shape with a high, late peak, and lower scores resulting in a plateau with a low,
early peak. The scores of these two PCs were included into the current analysis of individual variability.

As mentioned, the non-F0 cues included duration, amplitude, and voice quality. These were extracted from
accented vowels, not the three-syllable window used for F0, as the effect of the accent’s identity on preceding unaccented
syllables is unknown for Greek. Duration and RMS amplitude were automatically extracted using PRAAT (Boersma and
Weenink, 2023). For voice quality, we used the accented vowel’s mean H1-H2 (Keating et al., 2011), corrected for for-
mants and bandwidth using the Iseli et al. (2007) algorithm. This was calculated by averaging the measures across 12
time-intervals automatically obtained using PRAATSAUCE (Kirby, 2018).

Table 1. Glosses of example dialogues (with explanatory notes in square brackets), phonetic transcriptions of the responses, and autosegmen-
tal representations of their tunes.

Fig. 2. (a) Color-coded curves illustrate the effect of PC1 and PC2 on the mean curve (solid black line); the vertical line indicates the onset of
the accented vowel; for details see text (plot reproduced with permission from Arvaniti et al. (2024). (b) Probability distribution based on sim-
ulated data; the red dashed line marks the distribution mean; the horizontal solid black bar indicates the 95% Credible Interval with the lower
and upper bounds marked by the dashed black lines.
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2.3 Statistical analysis

The aim of our statistical modelling was to estimate the effect of accent type (H�, LþH�, H�þ L) on PC scores, duration,
amplitude and H1-H2. To avoid confirmation bias, data categorization by accent type (henceforth Accent) was based on
the dialogue in which each target word was elicited. Thus, for instance, all retained accents elicited in answers to what’s
this? were classed as H�s, even when they were not prototypical of the H� category; this is illustrated in Fig. 1, where the
H� is more dipped than typically expected for this accent.

The effect of Accent was estimated by fitting Bayesian multivariate mixed-effect models in R (R Core Team,
2020) using the BRMS package (B€urkner, 2018), the wrapper package for the probabilistic programming language STAN

(Carpenter et al., 2017). For the code, data, and a brief explanation of the difference between Bayesian and frequentist
approaches to statistical inference visit the OSF repository.

The dependent variables were the accented vowel duration, mean H1-H2, and RMS amplitude, and the PC1 and PC2
scores of the F0 curves as estimated in Arvaniti et al. (2024), all normalized using z-scores across all speakers, a procedure that
facilitates between-speaker comparisons [cf. Lorenzen et al. (2023)]. The constant effect was Accent, with three levels (HL, LH,
and H) and H as the reference level. The random effects were participant and item, with item capturing differences in
stress location (antepenult, penult, and ultima) and the absence or presence of an L�þH prenuclear accent. Models were built
top-down, starting with the model including Accent and by-participant and by-item random intercepts and by-participant and
by-item random slopes for Accent. Each model component was evaluated by comparing models with and without it using
Bayes factors (BF10) (Lee and Wagenmakers, 2014). A component was excluded if there was no evidence supporting it (when
BF10< 1) (Jeffreys, 1998). The models were fitted using 4 chains, 10 000 iterations each, including 4000 warm-ups, and uninfor-
mative priors, with normal distributions with a mean of 0 and a standard deviation of 5.

To explore individual variability in cue selection, we conducted a hierarchical cluster analysis on the effect of
Accent on individual speakers’ acoustic measures, following Lorenzen et al. (2023). Unlike those authors, who used point
estimates, namely the estimated means of posterior distributions [red dashed line in Fig. 2(b)], we based our analysis on
the 95% CrIs of posterior distributions [horizontal solid black bar in Fig. 2(b)]. This method provides a more accurate
description of the effect, as it encompasses 95% of the most likely values for the model coefficient given the data (Westfall
and Henning, 2013). A 95% CrI excluding 0 suggests a 95% probability that the effect of interest is present [see Fig. 2(b)].
Conversely, a 95% CrI including 0 suggests that the effect of interest is likely absent.

To prepare the data for hierarchical clustering we extracted posterior samples for the grand mean and the
group-specific deviations. We then derived the posterior distribution of speaker-specific slopes for Accent on each acous-
tic measurement by adding the group-specific deviations to the grand mean, and calculated the 95% CrIs of the posterior
distribution using the median_qi() function from the tidybayes package. Finally, the 95% CrIs was coded as
follows:

• 1 if located to the right of zero, suggesting a positive Accent effect (e.g., longer duration);
• 0 if containing zero, indicating that the Accent affect was absent;
• �1 if located to the left of zero, indicating a negative Accent effect.

The resulting codes were analyzed using the scipy.cluster.hierarchy module in PYTHON, which pro-
duced a dendrogram, representing the hierarchical organization of clusters in the data. To present all possible combina-
tions of the acoustic cues in expressing the three pitch accents, we used the number of the smallest branches in the den-
drogram as the cluster count, where speakers under the same branch use the same cues.

3. Results

3.1 Group level effects

The final model (derived from Bayes Factor analysis) contained the constant effect of Accent on all five measurements,
with varying slopes for Accent by participant but not by item. This indicates that the effect of Accent varied across
participants, but remained consistent across items.

Figure 3(a) depicts the 95% CrIs of the posterior probability distributions of the slope parameters b in the final
model. These parameters indicate the group-level effects of H�þ L and LþH� on each measurement, representing for
each measurement the average difference between each of those accents and H�. LþH� had higher PC1 and PC2 scores
compared to H� (PC1: Estimate¼ 0.64, 95% CrI [0.28, 0.99]; PC2: Estimate¼ 1.41, 95% CrI [0.90, 1.92]). Based on Fig.
2(a), this result suggests that LþH� had higher F0 scaling and a more scooped shape than H� [as in Arvaniti et al.
(2024)]. LþH� also had higher amplitude (estimate¼ 0.77, 95% CrI [0.36, 1.19]) and longer duration (estimate¼ 0.80,
95% CrI [0.36, 1.23]) than H�, but did not differ from it in H1-H2 (estimate¼ 0.38, 95% CrI [ –0.01, 0.77]). H�þ L had a
higher PC1 score than H� (estimate¼ 1.45, 95% CrI [1.13, 1.77]), suggesting it was scaled higher [as in Arvaniti et al.
(2024)], but did not differ from H� in terms of PC2 (estimate¼ 0.41, 95% CrI [–0.01, 0.82]), i.e., in shape. H�þ L was
also produced with higher H1-H2 (estimate¼ 0.36, 95% CrI [0.15, 0.58]) and higher amplitude (estimate¼ 0.46, 95% CrI
[0.08, 0.83]) than H�, but did not differ from it in duration (estimate¼ 0.34, 95% CrI [–0.05, 0.74]).

ARTICLE asa.scitation.org/journal/jel

JASA Express Lett. 4 (9), 095203 (2024) 4, 095203-4

https://scitation.org/journal/jel


3.2 Individual variability

Figures 3(b)–3(e) show the coding of the 95% CrI for the effect of LþH� and H� þ L (relative to H�) on each measure-
ment for each speaker. For LþH�, Fig. 3(b) shows that higher PC2 scores, indicating a more scooped curve, were present
in the data of all 13 speakers; longer duration was the second most frequent feature, present in the data of 10 speakers,
while higher F0 scaling (higher PC1 scores) and greater amplitude were less frequently used (9 and 7 speakers, respec-
tively); H1-H2 was not consistently used. Figure 3(c) shows that higher PC1 scores, reflecting higher scaling, were used by
all speakers for H�þL relative to H�, while PC2, H1-H2 and amplitude were used only by 6 speakers each, and duration
was rarely used (by just 4 speakers). The variable use of cues gives rise to a large number of clusters [colored tabs in Fig.
3(b) and 3(c)]: 10 clusters for LþH� vs H� and 9 for H�þ L vs H� [see also Fig. 3(d) and 3(e)]. However, as discussed,
some cues dominate.

4. Discussion and conclusion

We investigated the role of tonal and non-tonal cues in phonetically encoding intonation categories, and the extent to
which individuals vary in their use of such cues, by examining three pitch accents in Greek, H�, LþH�, and H�þ L.

At the group-level, Bayesian mixed-effect linear models confirmed the finding of Arvaniti et al. (2024) that
H�þL has a similar shape to H� but with higher F0 scaling, while LþH� is primarily distinguished from H� by its
scooped shape. The accents also differed in other dimensions: compared to H�, LþH� was accompanied by longer dura-
tion and greater amplitude of the accented vowel, while H�þ L exhibited greater amplitude and breathier voice. For
LþH�, these results confirm the importance of duration, which Arvaniti et al. (2024) show to be in a cue-trading relation-
ship with F0. The finding that, at the group level, non-tonal cues consistently contribute to the realization of pitch accents
provides further evidence that F0 is not the sole exponent of intonation [cf. Roessig et al. (2022)] or its only perceptual
cue [cf. Shang et al. (2024)]. Given such results, the investigation of non-tonal cues should be given due attention. We
note that the use of these additional cues was robust despite our accent classification approach which allowed for variabil-
ity in production.

At the individual level, hierarchical clustering showed that speakers differed in the number of F0 and non-F0
cues they used for each accent, though only three speakers relied exclusively on F0, and only for H�þ L. Such individual
variability has been previously demonstrated: Cangemi et al. (2015) showed that duration was used only by some speakers
to differentiate focus types (hence, pitch accents) in German, while Cangemi and Grice (2016) and Niebuhr et al. (2011)
found individual differences in the tonal cues differentiating intonation categories in Italian and German. In contrast, our
participants were consistent in their use of F0, in that they all used the same dominant cue per accent: scaling for H�þ L,
shape for LþH�. Such consistency can be a heuristic for the essential differences between accents: for example, since all
our speakers relied on F0 shape to differentiate LþH� from H�, but not all used scaling to do so, scaling is less likely to

Fig. 3. (a) Posterior probability distributions of the slope parameters b; (b) and (c) use of the five traits (columns) by individual speakers
(rows), grouped by cluster (colored tabs), in realizing LþH� (b) and H�þ L (c) in comparison to H�; (d) and (e) dendrograms generated by
hierarchical clustering (with speaker IDs on the x axis) for LþH� (d) and H�þ L (e) in comparison to H�.
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be a defining characteristic of LþH� and thus, we would argue, need not be included in this accent’s phonological
representation.

Additionally, some speakers, e.g., F4 and F10, used more cues than others, such as F3 and F6. At present, it is
unclear why some speakers use multiple cues, while others do not. Previous research suggests systematicity in such cue
variability (Chodroff and Wilson, 2017), but our results do not provide supporting evidence: e.g., speakers F3, F6, and F8
used only F0 scaling to differentiate H�þ L from H�, but multiple cues to differentiate LþH� from H�. It is possible that
clearer patterns will emerge with larger speaker groups, and the investigation of individual traits (such as musicality and
autistic-like traits) which may explain the observed differences in cue selection in production, as has already been shown
for perception; for instance, Orrico et al. (2023) found that autistic-like traits affect the extent to which participants attend
to phonetic detail in intonation processing. If production and perception are linked [Beddor (2009) and Harrington et al.
(2008), among others] we could expect that individual variability in production correlates with speakers’ cognitive charac-
teristics and their sensitivity to the same cues in perception. In turn, this could suggest that the distinction between tonal
categories is more pronounced for speakers who use multiple cues. However, evidence for this hypothesis is limited [e.g.,
Shultz et al. (2012)], indicating that further research is needed to better understand the link between production and per-
ception, as well as the influence of cognitive characteristics on individual variability. Additionally, insights could be gained
by incorporating into the clustering process the extent to which individual speakers use specific cues (something we have
not addressed here).

In conclusion, the present study showed that F0 cues, despite being the most consistently used, are not the only
means of encoding intonation categories. Non-F0 parameters, here duration, amplitude, and voice quality, also contribute.
This finding adds to a growing understanding that F0 is not the sole exponent of intonation. Finally, our results reveal
individual variability in cue selection. Using multiple cues can highlight the essential differences between categories, but
also prompts questions about the potential sources of individual variability in production and its influence on perception.
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Byrd, D., Krivokapić, J., and Lee, S. (2006). “How far, how long: On the temporal scope of prosodic boundary effects,” J. Acoust. Soc. Am.
120(3), 1589–1599.

Cangemi, F., and Grice, M. (2016). “The importance of a distributional approach to categoriality in autosegmental-metrical accounts of
intonation,” Lab. Phonol. 7(1), 9.

Cangemi, F., Kr€uger, M., and Grice, M. (2015). “Listener-specific perception of speaker-specific productions in intonation,” in Individual
Differences in Speech Production and Perception, edited by S. Fuchs, D. Pape, C. Petrone, and P. Perrier (Peter Lang, Lausanne, Switzerland),
pp. 123–145.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M. A., Guo, J., Li, P., and Riddell, A. (2017).
“Stan: A probabilistic programming language,” J. Stat. Soft. 76(1), 1–32.

ARTICLE asa.scitation.org/journal/jel

JASA Express Lett. 4 (9), 095203 (2024) 4, 095203-6

https://osf.io/rm46h/
https://doi.org/10.5334/labphon.14
https://doi.org/10.1353/lan.2024.a929737
https://doi.org/10.1159/000446001
https://doi.org/10.1353/lan.0.0165
https://www.fon.hum.uva.nl/praat/
https://www.fon.hum.uva.nl/praat/
https://doi.org/10.1080/01690965.2010.504378
https://doi.org/10.32614/RJ-2018-017
https://doi.org/10.1121/1.2217135
https://doi.org/10.5334/labphon.28
https://doi.org/10.18637/jss.v076.i01
https://scitation.org/journal/jel


Chodroff, E., and Wilson, C. (2017). “Structure in talker-specific phonetic realization: Covariation of stop consonant VOT in American
English,” J. Phon. 61, 30–47.

Dahan, D., and Bernard, J. M. (1996). “Interspeaker variability in emphatic accent production in French,” Lang. Speech 39(4), 341–374.
Fougeron, C., and Keating, P. A. (1997). “Articulatory strengthening at edges of prosodic domains,” J. Acoust. Soc. Am. 101(6), 3728–3740.
Gubian, M., Torreira, F., and Boves, L. (2015). “Using Functional Data Analysis for investigating multidimensional dynamic phonetic contras-
ts,” J. Phonetics 49, 16–40.

Harrington, J., Kleber, F., and Reubold, U. (2008). “Compensation for coarticulation, /u/-fronting, and sound change in standard southern
British: An acoustic and perceptual study,” J. Acoust. Soc. Am. 123(5), 2825–2835.

Iseli, M., Shue, Y.-L., and Alwan, A. (2007). “Age, sex, and vowel dependencies of acoustic measures related to the voice source,” J. Acoust.
Soc. Am. 121(4), 2283–2295.

Jeffreys, H. (1998). The Theory of Probability, 3rd ed. (Oxford University Press, Oxford, UK).
Keating, P., Esposito, C., Garellek, M., Khan, D., and Kuang, J. (2011). “Phonation contrasts across languages,” in Proceedings of the 17th
International Congress of Phonetic Sciences, pp. 1046–1049.

Kirby, J. (2018). Praatsauce: Praat-based tools for spectral analysis, https://github.com/kirbyj/praatsauce (Last viewed 4 September 2024).
Ladd, D. R. (2008). Intonational Phonology (Cambridge University Press, Cambridge, UK).
Lee, M. D., and Wagenmakers, E.-J. (2014). Bayesian Cognitive Modeling: A Practical Course (Cambridge University Press, Cambridge, UK).
Lorenzen, J., Roessig, S., and Baumann, S. (2023). “Redundancy and individual variability in the prosodic marking of information status in
German,” in Proceedings of the 20th International Congress of Phonetic Sciences, edited by R. Skarnitzl and J. Vol�ın, pp. 1320–1324.

Niebuhr, O., D’Imperio, M., Gili Fivela, B., and Cangemi, F. (2011). “Are there ‘shapers’ and ‘aligners’? Individual differences in signalling
pitch accent category,” in Proceedings of the 17th International Congress of Phonetic Sciences, pp. 120–123.

Orrico, R., Gryllia, S., Kim, J., and Arvaniti, A. (2023). “The influence of empathy and autistic-like traits in prominence perception,” in
Proceedings of the 20th International Congress of Phonetic Sciences, edited by R. Skarnitzl and J. Vol�ın, pp. 1280–1284.

Pierrehumbert, J. (1980). “The phonology and phonetics of English intonation,” Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge, MA.

Ramsay, J. O., and Silverman, B. W. (2005). Functional Data Analysis, 2nd ed. (Springer, New York).
R Core Team (2020). R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria),
https://www.r-project.org/ (Last viewed 4 September 2024).

Roessig, S., Winter, B., and M€ucke, D. (2022). “Tracing the phonetic space of prosodic focus marking,” Front. Artif. Intell. 5, 842546.
Shang, P., Roseano, P., and Elvira-Garc�ıa, W. (2024). “Dynamic multi-cue weighting in the perception of Spanish intonation: Differences
between tonal and non-tonal language listeners,” J. Phonetics 102, 101294.

Shultz, A. A., Francis, A. L., and Llanos, F. (2012). “Differential cue weighting in perception and production of consonant voicing,” J. Acoust.
Soc. Am. 132(2), EL95–EL101.

Westfall, P. H., and Henning, K. S. S. (2013). Understanding Advanced Statistical Methods (CRC Press, Boca Raton, FL).

ARTICLE asa.scitation.org/journal/jel

JASA Express Lett. 4 (9), 095203 (2024) 4, 095203-7

https://doi.org/10.1016/j.wocn.2017.01.001
https://doi.org/10.1177/002383099603900402
https://doi.org/10.1121/1.418332
https://doi.org/10.1016/j.wocn.2014.10.001
https://doi.org/10.1121/1.2897042
https://doi.org/10.1121/1.2697522
https://doi.org/10.1121/1.2697522
https://github.com/kirbyj/praatsauce
https://www.r-project.org/
https://doi.org/10.3389/frai.2022.842546
https://doi.org/10.1016/j.wocn.2023.101294
https://doi.org/10.1121/1.4736711
https://doi.org/10.1121/1.4736711
https://scitation.org/journal/jel

	s1
	tr1
	l
	n1
	s2
	s2A
	s2B
	d1
	f1
	t1
	f2
	s2C
	s3
	s3A
	s3B
	s4
	f3
	l
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c25
	c26
	c27
	c28
	c30
	c29
	c31
	c32
	c33
	c34

